All Articles

學習梯度下降簡單版本,Flowchart的作圖方式等

今天嘗試使用了JAVA的代理機能

java.lang.reflect.Proxy に触れてみる - vaguely

ResultSetInvocationHandler.java example

【Java】SQLやSQL結果をログに出すためのプロキシ - Qiita

L JDBC « Java

今天突然發現陪伴孩子是上算得投資

下定決心每天花時間陪他們成長。

不看字幕好像很有效

在現了當天在Costo聽不懂店員跟我說話的場景。

每天進步一點pytourch

買書? Coursera 上有哪些课程值得推荐? - 知乎

10月深入浅出pytorch-task02-ss

PyTorch入门实战教程笔记(二):简单回归问题。_Superstar02的博客-CSDN博客

PyTorch实战学习笔记_Superstar02的博客-CSDN博客

andrew ng 筆記

GitHub - fengdu78/Coursera-ML-AndrewNg-Notes: 吴恩达老师的机器学习课程个人笔记

GitHub - fengdu78/deeplearningaibooks: deeplearning.ai(吴恩达老师的深度学习课程笔记及资源)

https://www.bilibili.com/video/BV1YR4y147Np

#定义一个计算总的error(即总的loss),其中points为一系列的(x,y)的组合:
def compute_error_for_line_given_points(b, w, points):
    totalError = 0      				#定义总的loss
    for i in range(0, len(points)):
        x = points[i, 0]  				#取该点的x值
        y = points[i, 1]  				#取该点的y值
        totalError += (y - (w * x + b)) ** 2 		#将每一个点的loss累加
    return totalError / float(len(points))			#对总的error求一个平均,返回总的平均error

#定义一个计算梯度的函数:入口参数:b当前值,W当前值,点集合,学习率
def step_gradient(b_current, w_current, points, learningRate):
    b_gradient = 0
    w_gradient = 0
    N = float(len(points))      #总的数据点的个数
    for i in range(0, len(points)):
        x = points[i, 0]
        y = points[i, 1]
        #∂L/∂b = 2(Wx + b - y),所有梯度累加时除以N,以便结果不用再做平均
        b_gradient += -(2/N) * (y - ((w_current * x) + b_current))
        #∂L/∂W = 2(Wx + b - y)x,所有梯度累加时除以N,以便结果不用再做平均
        w_gradient += -(2/N) * x * (y - ((w_current * x) + b_current))
    new_b = b_current - (learningRate * b_gradient)
    new_W = w_current - (learningRate * w_gradient)
    return [new_b, new_W]
#循环迭代W,b,入口参数:(x,y)点集合,初始b,初始W,学习率,迭代次数:
def gradient_descent_runner(points, starting_b, starting_w, learning_rate, num_iterations):
    b = starting_b
    w = starting_w
    for i in range(num_iterations):
        b, w = step_gradient(b, w, np.array(points), learning_rate) 	#np.array(point)为(x,y)的数组
    return [b, w]
def run():
    points = np.genfromtxt("data.csv", delimiter=",")       #取数据
    learning_rate = 0.0001
    initial_b = 0 # initial y-intercept guess
    initial_w = 0 # initial slope guess
    num_iterations = 1000
    print("Starting gradient descent at b = {0}, w = {1}, error = {2}"
          .format(initial_b, initial_w,
                  compute_error_for_line_given_points(initial_b, initial_w, points))
          )
    print("Running...")
    [b, w] = gradient_descent_runner(points, initial_b, initial_w, learning_rate, num_iterations)
    print("After {0} iterations b = {1}, m = {2}, error = {3}".
          format(num_iterations, b, w,
                 compute_error_for_line_given_points(b, w, points))
          )

if __name__ == '__main__':
    run()

https://www.bilibili.com/video/BV1Sr4y1N71H?p=3&t=543.3

svg

Attention Required! | Cloudflare

mermaid - Markdownish syntax for generating flowcharts, sequence diagrams, class diagrams, gantt charts and git graphs.

GitHub - Bogdan-Lyashenko/js-code-to-svg-flowchart: js2flowchart - a visualization library to convert any JavaScript code into beautiful SVG flowchart. Learn other’s code. Design your code. Refactor code. Document code. Explain code.

SVG - Stroke

Getting Title at 41:30

GitHub - seflless/diagrams: Generate Flowcharts, Network Sequence Diagrams, GraphViz Dot Diagrams, and Railroad Diagrams

flowchart.js - Draws simple SVG flow chart diagrams from textual representation of the diagram

【VS Code + Marp】Markdownから爆速・自由自在なデザインで、プレゼンスライドを作る - Qiita

GitHub - hrhr49/tefcha: Text to Flowchart